Inequalities & Limit Theorems

Markov’s inequality

If X0X \ge 0, then for all a>0a \gt 0 :

P(Xμa)E[X]a\Bbb{P}(|X - \mu| \ge a) \le \dfrac{\Bbb{E}[X]}{a}

Chebyshev’s inequality

If μ=E[X]\mu = \Bbb{E}[X], then for all a>0a \gt 0 :

P(Xμa)Var(X)a2\Bbb{P}(|X - \mu| \ge a) \le \dfrac{Var(X)}{a^2}

Chernoff bounds

Let XX be a random variable with MX(t)=E[etX]M_X(t) = \Bbb{E}[e^{tX}] moment generating function.

P(Xa)etaMX(t),for all t0\Bbb{P}(X \ge a) \le e^{-ta} M_X(t), \quad \text{for all } t \ge 0

P(Xa)etaMX(t),for all t<0\Bbb{P}(X \le a) \le e^{-ta} M_X(t), \quad \text{for all } t \lt 0

Weak Law of Large numbers

Let X1...XnX_1 ... X_n be a sequence of independent identically distributed random variables with mean μ\mu and variance σ2\sigma^2.

P(X1+...+Xnnμϵ)n0\Bbb{P} \bigg( \bigg| \dfrac{X_1 + ... + X_n}{n} - \mu \bigg| \ge \epsilon \bigg) \xrightarrow[]{n \to \infty} 0

For all ϵ>0\epsilon \gt 0.

Strong Law of Large numbers

Basically just a confirmation that the mean of a set of things exists?

μ=E[Sn]\mu = \Bbb{E}[S_n]

Central limit theorem

Let X1...XnX_1 ... X_n be a sequence of independent identically distributed random variables. Then the sample mean is given by:

Sn=X1+...+XnnS_n = \dfrac{X_1 + ... + X_n}{n}

P(X1+...+Xnnμσnx)n12πxey2/2,dy\Bbb{P} \bigg( \dfrac{X_1 + ... + X_n - n \mu}{\sigma \sqrt{n}} \le x \bigg) \xrightarrow[]{n \to \infty} \dfrac{1}{\sqrt{2\pi}} \displaystyle\int_{-\infty}^{x} e^{-y^2/2} \\, dy